Chapter 6 Homework

1. The energy levels of hydrogenlike atoms are given by: $\quad E_{n}=-\frac{1}{2} \frac{e^{2}}{4 \pi \varepsilon_{0} a_{0}} \frac{Z^{2}}{n^{2}}$
(a) Calculate the wavelength, in nm , of the $\mathrm{n}=6$ to $\mathrm{n}=3$ radiative transition in He^{+}.
(b) Calculate the ionization energy of He^{+}, in eV

Note: $\frac{e^{2}}{4 \pi \varepsilon_{0} a_{0}}=2625 \mathrm{~kJ} / \mathrm{mol}$
2. The 1 s and 2 s wavefunctions of hydrogenlike atoms are:

$$
\psi_{1 s}=A_{1 s} e^{-Z r / a_{0}} \quad \psi_{2 s}=A_{2 s}\left(1-\frac{Z r}{2 a_{0}}\right) e^{-Z r / 2 a_{0}}
$$

(a) Prove the $\psi_{1 s}$ and $\psi_{2 s}$ are orthogonal to each other.
(b) Calculate the normalization constant, A_{I}.
(c) Calculate the most probable value of r for an electron in a 1 s orbital.
(d) Calculate $\langle\mathbf{r}\rangle$ for an electron in a 1s orbital (Note: first normalize the radial distribution function).
(e) Calculate the probability that the electron in a Is orbitl is between $\mathrm{r}=0$ and $\mathrm{r}=2 \mathrm{a} 0 / \mathrm{Z}$
(f) Calculate the probability that r is in the range: $a_{0} / \mathrm{Z} \leq \mathrm{r} \leq 4 \mathrm{a}_{0} / \mathrm{Z}$
(g) Calculate the average potential energy of an electron in $\mathrm{a}=1 \mathrm{~s}$ orbital.
(h) Show that the Radial component of $\psi_{1 s}$ is an eigenfunction of the radial Schrödinger equation (below) with $1=0$
3. The $2 \mathrm{p}_{\mathrm{x}}$ wavefunction of hydrogenlike atoms is given by:

$$
\psi_{2 p x}=A r e^{-Z r / 2 a_{0}} \sin \theta \cos \phi
$$

(a) Calculate the most probably value of r for an electron in a $2 p_{x}$ orbital.
(b) Calculate $\left\langle r^{2}\right\rangle$ for an electron in a $2 p_{x}$ orbital (Note: first normalize the radial distribution function).
4. One of the wavefunctions of hydrogenlike atoms is:

$$
\psi=A \cdot R(r) \cdot Y_{l m}(\theta, \varphi)=A r^{2} e^{-Z r / 3 a_{0}} \sin ^{2} \theta e^{2 i \varphi}
$$

(a) Show that $\mathrm{Y} \operatorname{lm}(\theta, \phi)$ is an eigenfunction of the L^{2} operator (below). What is the eigenvalue?
(b) Show that $\mathrm{Y} \operatorname{Im}(\theta, \phi)$ is an eigenfunction of the L_{z} operator (below). What is the eigenvalue?
(c) Set up the product of 3 integrals in spherical polar coordinates required to calculate $\left\langle y^{2}\right\rangle$. You do NOT have to perform the integrals.
5. Two of the complex hydrogen atom $\mathrm{d}(\mathrm{l}=2)$ wavefunctions are:

$$
\psi_{n 22}(r, \theta, \varphi)=R_{n 2}(r) \cdot \sin ^{2} \theta \cdot e^{2 i \varphi} \quad \psi_{n 2-2}(r, \theta, \varphi)=R_{n 2}(r) \cdot \sin ^{2} \theta \cdot e^{-2 i \varphi}
$$

Use the Euler Relations below to show how these can be combined to yield two real forms of the hydrogen atom d wavefunctions.

DATA

$\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$

$$
\begin{aligned}
& 1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2} \\
& 1 \AA=10^{-10} \mathrm{~m} \\
& \mathrm{k} \cdot \mathrm{~N}_{\mathrm{A}}=\mathrm{R} \\
& 1 \mathrm{amu}=1.66 \times 10^{-27} \mathrm{~kg} \\
& 1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa} \\
& 1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

$\hbar=\mathrm{h} / 2 \pi=1.05 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
$\mathrm{c}=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}=3.00 \times 10^{10} \mathrm{~cm} / \mathrm{s}$
$\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
$\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$\mathrm{R}=8.31 \mathrm{~Pa}-\mathrm{m}^{3} / \mathrm{mol}-\mathrm{K}$
$\mathrm{m}_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg}$ (electron mass)
$\int_{0}^{\infty} x^{n} e^{-a x} d x=\frac{n!}{a^{n+1}}$
$\int_{0}^{2} x^{2} e^{-x} d x=0.647$
$\int_{0}^{4} x^{2} e^{-x} d x=1.524$
$\int_{0}^{8} x^{2} e^{-x} d x=1.972$
Radial Schrödinger Equation: $-\frac{\hbar^{2}}{2 m}\left[\frac{d^{2} R}{d r^{2}}+\frac{2}{r} \frac{d R}{d r}-\frac{l(l+1)}{r^{2}}+\frac{2 Z}{a_{0} r} R\right]=E R$
$\mathbf{L}_{\mathbf{z}}$ Operator: $\hat{L}_{z}=\frac{\hbar}{i} \frac{\partial}{\partial \varphi}$
\mathbf{L}^{2} Operaor: $\quad L^{2}=-\hbar^{2}\left\{\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right\}$
Euler Relations: $e^{i x}=\cos (x)+i \sin (x)$ and $e^{-i x}=\cos (x)-i \sin (x)$

